
Considerations of Persistence and Security

in Choices, an Object-Oriented Operating System

�

Roy H. Campbell and Peter W. Madany

University of Illinois at Urbana-Champaign

Department of Computer Science

1304 W. Spring�eld Avenue, Urbana, IL 61801

Abstract

Choices is an object-oriented operating system written in an object-oriented language and

runs on bare hardware. It supports distributed, parallel applications on a network of multipro-

cessors. The kernel is implemented as a dynamic collection of objects that have been instantiated

from classes. The classes are represented as objects at run-time. Choices has a paged virtual

memory organized around memory objects. Each memory object can have its own separate

backing store, page placement, and page replacement algorithms. It can be shared, both within

a shared memory multiprocessor and between networked computers using a distributed virtual

memory protocol.

Choices supports an object-oriented �le system model in which �les may be mapped into

virtual memory. Together, the kernel and an object �le store specialization of the �le system

model provide persistent objects. Applications are permitted controlled access to the methods

of persistent objects. Security and protection are provided by a combination of object proxies,

access lists, and name servers. This paper discusses the persistence and security design issues

that are being studied in the Choices implementation.

1 Introduction

Choices is an object-oriented operating system written in an object-oriented language (C++). The

system runs on bare hardware: the NS32332, the MC86030, and the Intel 386. It supports dis-

tributed, parallel applications on a network of Encore Multimax multiprocessors.

Choices has, as its kernel, a dynamic collection of objects. System resources, mechanisms, and

policies are represented as objects that belong to a class hierarchy.

1

For programming convenience,

the root of the hierarchy is an Object and the classes of the hierarchy are represented as Class

Objects. A Class supports several methods including:

� isMemberOf, which takes a Class as its argument and returns whether the Object is an instance

of the given Class,

� isKindOf, which takes a Class as its argument and returns whether the Object is an instance

of the given Class or any of its subclasses, and

�

This work was supported in part by NSF grant CISE-1-5-30035 and by NASA grants NSG1471 and NAG 1-613.

1

By convention, we use an initial capital letter to designate the class of such objects. Where we unambiguously

refer to an instance of a class, we will use the name of the class of the object.

1



� isASubclassOf, which takes a Class as its argument and returns whether the Class is a subclass

of the given Class.

All entities in the operating system are modeled as objects and include system processes, user

processes, �les, regions of memory, and hardware devices like CPU's and disk controllers. The

application/kernel interface is de�ned by method invocations from objects in user mode to objects

in kernel mode. In user mode, a kernel object is represented by an ObjectProxy. An ObjectProxy

may be static or created dynamically on demand if the protection policy of the kernel object

is not violated. Kernel objects are mapped into ObjectProxies by special kernel objects called

NameServers. The performance of the ObjectProxy approach is described in Section 7.

A Choices Process executes in a Domain, which maps a collection of logical data segments or

MemoryObjects into a virtual memory. Each MemoryObject can be paged to its own backing store

using independent paging algorithms. Distributed virtual memory[6] allows the dynamic addition

or removal of a MemoryObject to or from the di�erent virtual memories of a network of computers.

Persistent storage is based on an object-oriented �le system model. MemoryObject subclasses

support access to data stored on disks, �les, or physical memory in a variety of formats. The

formats include interface and data representations for UNIX 4.3 BSD �le systems, MS-DOS �le

systems, and UNIX System V �le systems [9, 8]. Files may be mapped into virtual memory and

this allows transparent access to persistent data. Distributed virtual memory will allow �les to be

accessed remotely.

An object store is a specialized application of the �le system. PersistentObjects reside in the

store as MemoryObjects and are mapped into virtual memory on request. Method invocations

on PersistentObjects are identical to method invocations on normal Objects. Distributed virtual

memory will allow remote method invocations on PersistentObjects.

Security is provided by a combination of access rights maintained by the �le system, individual

objects, and a user/system protection mechanism. Kernel objects are protected by supervisor state

and by the virtual memory hardware. Method calls to kernel objects from user applications cannot

be performed unless the user has been granted permission to access the object. That permission is

provided in the form of an ObjectProxy. Once provided, all method calls to the ObjectProxy are

trapped and converted to method calls to the kernel object. During the trap, they are checked for

validity by a kernel protection mechanism. Non-kernel objects are mapped into the virtual memory

space of the application. Their data segments may be shared between applications using shared

virtual memory or distributed virtual memory. Once access is established, method calls can be

made directly from the application to the object.

This paper discusses the persistence and security design issues that are being studied by the

Choices implementation.

2 Virtual Memory support for MemoryObjects

A Choices process executes in a Domain, which is a mapping between a virtual memory space and

MemoryObjects[14, 16]. Each memory-mapped MemoryObject has a single MemoryObjectCache

that maintains physical memory management information associated with virtual memory. The

information is kept in a machine independent and virtual memory address independent form. This

allows a Domain to map a particular MemoryObject into several regions of its virtual address space.

It also allows several Domains to share both a MemoryObject and its MemoryObjectCache and

2



common physical memory management information.

The Domain resolves the virtual memory address of a page fault into a MemoryObject and

o�set pair. The Domain requests the MemoryObject to map the o�set. In turn, the MemoryObject

requests its MemoryObjectCache to repair the fault. The paging strategy is encapsulated entirely

within the MemoryObjectCache. If required, a page frame is requested from the frame Store. The

Store returns a descriptor that identi�es the physical memory into which data will be paged. The

MemoryObject fetches the data from backing store and returns the descriptor to the Domain. In

turn, the Domain passes the descriptor to an AddressTranslationmethod that updates the hardware

virtual memory mapping. Then the process that generated the page fault is resumed.

Distributed virtual memory is implemented by a subclass of MemoryObjectCache[6, 16]. Page

coherency is maintained through DVMPageRecords. Each DVMPageRecord de�nes the state of

a page. The coherency protocol is de�ned by a state machine and state transitions. The current

protocol used allows one computer to own a page at a time and ownership is driven by a demand to

write. The owner responds to remote read requests for the page by changing its page to read-only

access and copying the page to the requesting computer with read-only access. Before a write, all

remote read-only copies of the page are invalidated.

Since distributed virtual memory is associated with the MemoryObject, the scheme is exible

and permits a Domain to share many distributed MemoryObjects, each of which may use a di�erent

coherency protocol and be shared by a disjoint set of remote computers. Distributed virtual memory

is established by mapping a remote MemoryObject into virtual memory. A remote MemoryObject

can be obtained in many ways including through method invocation on PersistentObjects and

through the distributed �le system interface.

3 An Object-Oriented File System Model

The object-oriented �le system model[7] structures the data of MemoryObjects with StoredObjects.

The two main subclasses of StoredObject that organize storage are ObjectContainer and ObjectDic-

tionary. FileStream and PersistentObject are two further subclasses of StoredObject that provide

useful programming abstractions of a MemoryObject.

A MemoryObject provides read and write methods to access the logical collection of persistent

data that it manages. The read and write methods transfer blocks of data. Additional methods are

used to support memory-mapping and protection. MemoryObject subclasses are specialized by the

storage mechanism used to store the data and include Disks that read and write sectors, Partitions

that read and write clusters of disk sectors within a contiguous region of a Disk, and various logical

\disks", or �les, like UNIX inodes. Along with its data, the MemoryObject also records a speci�c

subclass of StoredObject, and this determines how its data may be used. Each StoredObject is

based on a single MemoryObject, which is called its underlying MemoryObject.

An ObjectContainer organizes a MemoryObject into an indexed collection of MemoryObjects.

Compared with the original MemoryObject, the MemoryObjects of a Container correspond to

a more abstract storage mechanism or higher level within the �le system. The Container may

impose a dynamic or static organization on the MemoryObject depending on the abstraction being

implemented. By de�nition, MemoryObjects must belong to exactly one ObjectContainer and can

be subdivided into at most one ObjectContainer. ObjectContainers can be nested to an arbitrary

depth. A MemoryObject descriptor called an IdNumber includes a list of indices that uniquely

identify the location of a MemoryObject stored in nested ObjectContainers.

3



All StoredObjects and their underlying MemoryObjects are persistent objects that can be acti-

vated and deactivated as well as created and deleted. Except for PersistentObjects (see Section 5),

the activation and deactivation of StoredObjects is explicitly programmed within the methods of

the Objects. ObjectContainers provide the methods open, close, and create to activate, deacti-

vate, and create MemoryObjects, respectively. MemoryObjects are deleted if, after they have been

closed, they are no longer referenced by any other objects in the �le system. The open method

takes an index as argument and returns the corresponding MemoryObject. Internally, the Object-

Container associates a descriptor with each index that includes a reference to the MemoryObject

once it has been opened. Successive opens return the reference obtained by the �rst open. An

activation ReferenceCount is maintained by opens and closes and when this count returns to zero,

the MemoryObject is deactivated.

ObjectContainer subclasses are specialized by the scheme used to provide an indexed collection

of MemoryObjects and include DiskContainers, which divide the storage of a Disk into an collection

of Partitions, and various stream-oriented �le system containers, which divide the storage of a

Partition into a collection of �les and free blocks.

An ObjectDictionary, also called a directory, uses its underlying MemoryObject to store a map-

ping from convenient symbolic keys for MemoryObjects to the indices used by an ObjectContainer.

Within any ObjectDictionary, the keys must be unique, but several keys may map to the same

index. MemoryObjects can belong to one or more ObjectDictionaries. The open method takes a

key as an argument and, if the key is found, returns the appropriate MemoryObject. It obtains

this reference by invoking the open method on the ObjectContainer using the appropriate index.

ObjectDictionaries also have methods to add and remove mapping entries. When a MemoryObject

is added to an ObjectDictionary, the MemoryObject's link count is incremented. When a Mem-

oryObject is removed from an ObjectDictionary, the MemoryObject's link count is decremented.

ObjectContainers can use this link count to determine when MemoryObjects are no longer needed

and therefore need to be deleted. ObjectDictionary subclasses are specialized by various �le system

standards for describing the storage layout of mappings.

The StoredObject subclass, FileStream, provides applications with a stream-oriented interface

to MemoryObjects. FileStreams provide byte-addressability and the concept of a \current �le posi-

tion". Applications may use read and write methods to read and write multiple bytes of sequential

data. These methods change the current �le position. The seek method also changes the current

�le position. A FileStream either bu�ers individual application reads and writes and invokes block

reads and writes on its associated MemoryObject, or it directly exploits the memory-mapping of

MemoryObjects into an application's Domain.

Specializations of the �le system model provide stream-oriented �le systems that conform to op-

erating system standards such as 4.3 BSD UNIX, System V UNIX, and MS-DOS[9, 8]. Preliminary

performance data has been gathered for the 4.3 BSD UNIX specialization, see Section 7. The �le

system class hierarchy also supports the construction of customized and experimental �le systems.

Various instances of �le systems can coexist and interoperate in a running Choices system.

The experimental �le systems that have been built include a log-structured �le system described

in [11]. Log-structured �le systems are designed to increase I/O throughput by reducing disk head

movement. We have two working prototypes of log-structured �le systems and we plan to measure

and analyze their performance. Another experimental �le system provides the UNIX stream-

oriented interface to formatted �les of various kinds including libraries and archives. The Choices

stream-oriented �le system tools can then be used on these formatted �les without modi�cation.

4



A �le system for the UNIX \ar" format has been �nished and \tar", \cpio", \a.out", and \Mail"

formats are in progress.

4 An Object-Oriented Kernel Interface

The Choices kernel is a dynamic collection of objects that is structured by a class hierarchy.

Applications access kernel facilities by invoking methods on kernel objects. Abstract classes provide

interfaces for generic services within the kernel, for example I/O services. New objects can be

installed within the kernel and their methods can be invoked both by application programs and by

other system objects using the abstract interfaces.

The ObjectProxy class provides a transparent capability to invoke the methods of kernel objects.

An ObjectProxy is a protected object that delegates method calls to a speci�ed object. The use of

ObjectProxies requires no compiler modi�cations. They are syntactically and semantically identical

to the objects they represent and may be used interchangeably with them. Kernel objects may

be used instead of application objects in a user program with no change to the program. Kernel

objects may also use ObjectProxies to access other kernel objects.

Without an appropriate ObjectProxy, application program access to kernel objects is prevented

by the virtual memory mapping and supervisor mode protection of the hardware. An ObjectProxy

is allocated in read-only memory so that it may be modi�ed only by trusted system code. Ob-

jectProxies are obtained from a NameServer that resolves requests involving symbolic names into

ObjectProxy references.

An application invoking a method call

2

on an ObjectProxy follows the standard C++ conventions

for method lookup by jumping indirectly through an indexed address in the virtual function table

(vtable) associated with the object. The �rst word of a C++ object contains the address of its vtable.

The second word of an ObjectProxy contains the address of the actual object to be accessed. All

ObjectProxies share a common vtable and the resulting code that is executed records the method

index and reinvokes the method on the actual object. When an application is making the method

call, the code traps into kernel code before completing the method call reinvocation. Care is taken

in the code to check that an ObjectProxy is not located in application memory.

5 Persistent Objects

In Choices , the concept of a persistent object provides a uni�cation and simpli�cation of several

subsystems. A persistent object is a member of a subclass of PersistentObject, which has methods,

local data, and a lifetime comparable to a �le in a �le system. Its lifetime is \global"; that is, it

does not depend on the lifetime of application or system processes and can survive reboots of the

system. However, its lifetime does depend on maintaining the integrity of the Choices �le system.

To simplify programming, PersistentObjects may store references to other PersistentObjects in

their local data. To avoid making a distinction between a PersistentObject and a conventional

object, activating and deactivating a PersistentObject is performed transparently. This is in direct

contrast with the way that persistent data is accessed in the �le system, where �les must be opened

and closed explicitly.

2

For an object to be proxiable, its public methods must be virtual functions.

5



5.1 Persistence

The mechanisms to support PersistentObjects are built as a specialization of existing mechanisms:

the Choices object-oriented �le system model and memory-mapped �les. Except for the following

minor restrictions, a PersistentObject has transparent usage:

1. A pointer cannot be used to store the virtual memory address of a PersistentObject within

the local data of a PersistentObject because that address may be invalid or inappropriate

in one of the many di�erent virtual memory spaces into which the object may be mapped

during its lifetime. Instead, PersistentObjects must use a Reference to store a descriptor for

another PersistentObject. A Reference is a lightweight object that has the same operational

syntax as a pointer.

2. The creation of a PersistentObject uses a method call rather than the standard C++ new

operator.

These restrictions arise because Choices currently runs on 32-bit address virtual memory architec-

tures. To maximize the virtual memory space available to a process, no virtual address range is

used by deactivated PersistentObjects. PersistentObjects may be mapped at di�erent addresses

within di�erent Domains during their lifetime. The virtual memory address of a PersistentObject

within a particular Domain is always the same during an activation although it might change after

a period of deactivation. The Reference mechanism allows the operating system to avoid potential

address conicts.

3

References contain a \pointer" that locates a PersistentObject within a persistent object store.

When a Reference is �rst assigned the location of a PersistentObject, the corresponding Memory-

Object may not be memory-mapped into the Domain containing the Reference. Before the Refer-

ence can be dereferenced to invoke a method on the PersistentObject, the PersistentObject must

be \active" and bound to an address within the virtual memory. The initial dereference binds the

Reference to an address and stores the address for future use. Subsequent method calls dereferenc-

ing the Reference use the stored address. The following steps are performed each time a Reference

is used:

1. Check if the PersistentObject has been bound to a virtual memory address. If it has, proceed

to step 10.

2. Request the retrieval of the underlying MemoryObject of the PersistentObject from the �le

system.

3. If the MemoryObject has not already been opened, the �le system opens it.

4. Check the class of the MemoryObject against the class of the Reference.

5. If the code for the methods of the PersistentObject has not already been loaded, load the

code from the �le system.

3

A port of Choices to a machine with a 64- or 128-bit virtual memory address space would allow a single large

virtual memory address space for all Domains. PersistentObjects could be assigned an address for the duration of

their lifetime. This would allow us to remove the restrictions but would not require a change to applications or

PersistentObject code.

6



6. If the MemoryObject has not already been mapped into any Domain, create a cache for it.

7. Set the vtable pointer for the PersistentObject to the correct value.

8. If the MemoryObject has not already been mapped into the current Domain, map the Mem-

oryObjectCache into the current Domain.

9. Store the virtual memory address of the mapped MemoryObject for future use.

10. Proceed with the method call using the virtual memory address.

If the PersistentObject is a kernel object and the Reference is stored in the virtual memory of an

application, the Reference will, if permitted by the NameServer, bind the address to an Object-

Proxy representing the object. Having introduced the PersistentObject scheme, several Reference

mechanism design considerations require further explanation.

5.2 References

References, which are used instead of pointers in the local data of PersistentObjects and applica-

tions, allow semi-permanent storage of complex data structures. References are only used to refer

to PersistentObjects, thus the PersistentObject implementation imposes neither a time nor a space

overhead on the use of memory-only C++ objects. They provide the following features: compile-

time type checking, a syntax identical to pointers, transparent object activation and deactivation,

and automatic garbage collection.

Type Checking To help ensure the correct usage of PersistentObjects, References are typed by a

Reference class hierarchy that mirrors the PersistentObject class hierarchy. Typed References allow

almost all uses of PersistentObjects to be type-checked at compile-time. (C++ compilers usually

perform most type-checking for C++ programs.) Run-time type checks are needed only when the

�le system interface retrieves a PersistentObject from the �le system's object store.

Pointer-like Syntax A Reference encapsulates storage for the IdNumber of a PersistentObject's

underlying MemoryObject. The IdNumber is su�cient information to activate the PersistentOb-

ject. A Reference overloads the C++ assignment operator \=" with an assignment method. The

IdNumber in a Reference may be changed by assignment using another Reference as an argument.

For example, �le system interface enquiry methods use assignment to return a Reference. The

assignment method maintains a reference count of how many References contain IdNumbers for a

particular PersistentObject.

The C++ dereferencing operator \->" is overloaded so that References may be used as pointers

without any syntactic changes to the code. The �rst time a method on a Referenced Persisten-

tObject is invoked within a Domain, its underlying MemoryObject must be mapped into virtual

memory and it may need to be activated. These steps are performed by the dereferencing method.

The implementation maintains a read-only persistent object hash table of IdNumbers in the

virtual memory of each Domain. The hash table associates a pointer with the IdNumber. The

dereferencing method hashes the IdNumber into the table. The �rst time this happens, the Id-

Number will not be found in the table. The dereferencing method uses the IdNumber to map the

PersistentObject representation into virtual memory using the �le system interface. During this

7



update, the pointer associated with the IdNumber in the hash table is assigned the virtual address

used by the Domain to map the MemoryObject into virtual memory. Subsequent dereferences hash

into the table and use the virtual memory address that is stored in the associated pointer.

Activation and Deactivation The number of References \pointing" to a PersistentObject per

Domain is recorded in an activation ReferenceCount. This ReferenceCount is increased whenever

a Reference \pointing" to the PersistentObject is copied by assignment into another Reference.

PersistentObjects are retrieved from the object store, activated, and mapped into the vir-

tual memory of a Domain by an initial Reference dereference. Further dereferences may map a

PersistentObject into other Domains. The PersistentObject's MemoryObject maintains a domain

ReferenceCount that contains the number of Domains into which it has been mapped. It is incre-

mented when the MemoryObject is mapped into a new Domain.

Whenever a Reference is deactivated, reassigned, or destroyed, the activation ReferenceCount of

the PersistentObject to which it \pointed" is decremented. If it reaches zero, the PersistentObject is

removed from the virtual memory of the Domain, the persistent object hash table entry is removed,

and the domain ReferenceCount is decremented. If the domain ReferenceCount reaches zero, the

PersistentObject is deactivated and its data stored in the �le system.

Garbage Collection To conserve �le space in a persistent environment, References help support

\automatic" garbage collection of PersistentObjects that are no longer needed. This garbage collec-

tion is based on the concept of unreachable objects. The persistent object store specialization of the

model �le system contains a PersistentObject \forest" directory that is, by de�nition, reachable.

The directory contains References to reachable PersistentObjects. In turn, these PersistentObjects

may have References to other PersistentObjects and so on, forming a chain of References. A reach-

able PersistentObject must be in a chain of References from the forest. All other PersistentObjects

are considered unreachable and their storage will be automatically reclaimed. A PersistentObject

can be added to or removed from the forest using the methods persist and desist.

To simplify the current implementation, link counts are used to �nd unreachable Persistent-

Objects. The management of link counts is transparent to programs that use PersistentObjects, and

is similar to the reference counting mechanism used for activation and deactivation. When a Refer-

ence is assigned a PersistentObject's IdNumber, the PersistentObject's link count is incremented.

If the Reference is destroyed or has another IdNumber assigned to it, the previous PersistentOb-

ject's link count is decremented. When a link count reaches zero, the PersistentObject is considered

unreachable, and it is deleted.

The current object store supports garbage collection for frameworks of PersistentObjects that

are modeled as directed acyclic graphs (DAG's). Garbage collection of cyclical data structures is

planned but not currently supported.

Because one of the �rst applications of the Choices object store, an object-oriented software

con�guration management system[12], requires a framework modeled as a DAG with back-edges,

two classes of References are supported in the current experimental implementation of the object

store: References and TransientReferences.

References model forward-links, also called \strong" pointers. The ReferenceCounts control

activation and deactivation. File system link counts control garbage collection and keep needed

PersistentObjects frombeing deleted. TransientReferences model backward-links, also called \weak"

8



pointers. They use ReferenceCounts only. Thus, they do not keep PersistentObjects from being

deleted.

TransientReferences are used to point from component objects back to aggregate objects that

Reference them. Reference cycles would occur if the component objects also used References, pre-

venting our simple garbage collection scheme from working. Implementation of improved garbage

collection methods will eventually make these subclasses of Reference unnecessary.

Distributed and Shared Persistent Objects A PersistentObject may be shared between

Domains. A MemoryObjectCache, together with any mutual-exclusion policy implemented by

subclasses of the PersistentObject class, will keep the data representation of the PersistentObject

coherent. When the PersistentObject is no longer needed in virtual memory, any dirty pages are

paged back to the �le system and its MemoryObject is closed.

The concept of a PersistentObject extends to a distributed system using distributed virtual

memory. The IdNumber used in a Reference to activate a PersistentObject is designed to locate a

MemoryObject in a \distributed" �le system. Thus, remote References may be assigned to local

References and dereferenced to invoke methods on possibly remote PersistentObjects.

6 Issues of Security

Our goal is to recast operating system security and protection issues into an object-oriented frame-

work. Security and protection policies and mechanisms should be encapsulated within objects.

Related policies and mechanisms should be organized within a class hierarchy that allows the reuse

of code. In this paper, we use security in the context of user concerns and protection in the context

of the operating system.

In Choices , protection is physically implemented by the virtual memory hardware and user/sup-

ervisor state and these are under the control of the kernel. Applications can only access kernel

objects if the kernel NameServer builds an ObjectProxy to allow that access. Two important objects

that the NameServer provides the application are the persistent object store and �le system. The

object store controls access to PersistentObjects. The �le system controls access to persistent data.

More complex security and protection mechanisms and policies are built from these primitives.

Naming In Choices , we have tried to separate the issues of naming from protection. There are

several di�erent kinds of names that designate objects including:

1. a virtual memory address,

2. a MemoryObject IdNumber, or

3. a symbolic \path name" of keys that identify a �le or PersistentObject through a sequence

of directory searches.

A program may have access to a name but may not be able to invoke a method on the object that

it designates. In general, permission to access the methods of a named object must be granted

by an object implementing a protection or security policy before the named object can be used.

Protection and security mechanisms ensure that an object cannot be used until this has been

granted by a policy. In our study of protection and security so far, we believe that we can restrict

9



the acquisition of names in \need to know" protection policies by protecting NameServers from

general access.

ObjectProxies ObjectProxies are like capabilities in the sense that they are associated with a

group of Processes executing in a Domain and once they have been granted they may be exercised

without any further checks. A limited form of revocation is possible by removing the ObjectProxy

from service but this would normally result in the failure of the application using the ObjectProxy.

So far, the mechanism permits access to all the methods of an object or none at all. The

rationale behind this behavior is that access to ObjectProxies is type-checked at compile time. An

abstract class can be used to declare the appropriate application interface at compile time without

requiring potentially ine�cient checks at run-time.

The NameServer is a kernel object that provides the user interface to the ObjectProxy mecha-

nism. It maintains a set of keys and the bindings of the keys to kernel objects. New kernel objects

can be registered with the NameServer by other kernel objects.

The ObjectProxy mechanism is managed by a simple security policy that is associated with

the NameServer. The policy responds to any request to access a kernel object by forwarding the

request to the kernel object concerned, along with the class of the ObjectProxy expected and the

Domain in which the request was made. The kernel object responds to the request by either not

granting permission or by returning the address of an object. The object may be the kernel object

itself or it may be an object to which it has delegated responsibility for user communication. In

this way, the delegate may �lter user method calls.

If the request is granted, the policy instructs the ObjectProxy mechanism to build an Object-

Proxy, and this is returned to the NameServer. The NameServer binds the ObjectProxy to the

key within its internal data structures and returns a pointer to the ObjectProxy to the applica-

tion. Subsequent requests from the same Domain to access the same kernel object use the new key

binding.

File System The security and protection mechanisms employed in the �le system depend on the

specialization of the �le system model that is in use. In general, only memory-mapped �les are

directly available to an application. Access to FileStreams, ObjectContainers, ObjectDictionaries,

MemoryObjects, and Domains are all provided through ObjectProxies.

The methods of �le system objects augment the functionality of the NameServer at the ap-

plication interface. The �le system interface updates a Domain's ObjectProxy table by creating

ObjectProxies directly, if the request does not violate the �le system's security policy. For UNIX-

like �le systems, the security policy is based on the user and group identi�cations of the �le's owner,

the user and group identi�cations of the Domain that is requesting access to the �le, and the set of

access rights associated with the �le. In current implementations, the address of an ObjectProxy

for a MemoryObject cannot be passed from one Domain to another through shared memory and

used because the ObjectProxy protection mechanism prevents one Domain from using another Do-

main's ObjectProxies. In future �le system specializations, access lists will be used to replace the

access right mechanism.

Persistent Object Store Since PersistentObjects can store References, they provide a very

exible mechanism to build protection and security schemes for accessing other PersistentObjects.

10



A kernel PersistentObject may use its own policy to update a Domain's ObjectProxy table

using a similar scheme to that of the �le system scheme described above. That policy can be based

on access lists or rights of Domains stored with particular PersistentObjects or access rights that

are stored in \capability-list" like PersistentObjects associated with the Domains of a user.

PersistentObjects can also be mapped into the user virtual memory of applications. In such

cases, References can be used to pass \pointers" to PersistentObjects from one Domain to another

through a shared PersistentObject. In such cases, the object store security policy still controls

whether a Persistent Object passed by a Reference can be accessed in the new Domain.

7 Performance Issues

Choices has grown from over 30,000 to over 75,000 lines of C++ code in the current \stable" version.

Systems integration of the various Choices designs has allowed us to take preliminary performance

measurements[15]. These were measured on a NS32332, 10MHZ processor.

The performance of the object proxy approach compares favorably with the Encore Computer

Corporation's UMAX (4.2 BSD UNIX) system call. The better performance of the object proxy

call is a result of exploiting knowledge of the C++ virtual function calling convention. The im-

plementation of the object proxy call avoids saving unnecessary context during the transfer from

non-privileged to privileged execution.

The performance of the object-oriented �le system model has been measured for the BSD 4.3

specialization of the Choices �le system. We calibrated our measurements by repeating the same

measurements on the UMAX operating system. In general, Choices takes slightly more time than

UMAX to open or create a �le but a little less time to close a �le. Choices takes longer because

its �le system is memory-mapped and has additional associated data structures. Clearly, the most

important operations on open �les are read and write. The performance of these operations depends

on whether the data is cached in main memory or written out to disk. For cached reads or writes of

8192-byte aligned blocks, Choices is faster than UMAX because it uses memory-mapped �les and

virtual memory support instead of a bu�er cache. For uncached read and write operations, Choices

and UMAX perform similarly because both systems are limited by the speed of the disk. Choices

performs the lseek positioning of the �le location pointer faster than UMAX, primarily because it

provides a more e�cient system call mechanism.

Times were also measured to copy large �les from disk-to-disk and from cache-to-cache. For

disk-to-disk copies, Choices performs slightly faster than standard UMAX, largely because of the

e�ciency of the Choices caching mechanism. For cache-to-cache copies, Choices completed the copy

in less than half the time required by UMAX, again because of the e�ciency of the Choices caching

mechanism. Choices also provides a single operation, copy, to copy an entire �le. By avoiding the

overhead of making many system calls (2 per block copied), Choices provides a substantially faster

�le copy mechanism.

Future e�ort will be devoted to a more extensive analysis of the behavior of the �le system and

PersistentObjects under di�erent loads.

11



8 Discussion

Persistent objects are the subject of much investigation[3]. The persistent objects of Choices are

inuenced considerably by the C++ implementation and have similarities to persistence in a number

of systems including E/EXODUS[13, 5], O++/ODE[2, 1], PS-algol[4], SOS[17], and Comandos[10].

Because of the diversity of di�erent schemes, the comparison of our system with other systems is

an ongoing project.

Both E and O++ are based on extended versions of C++ and include object storage managers.

Their primary advantages are the smooth integration of persistence within the C++ language. Our

design goal has been to provide this integration without compiler modi�cations or extensions. E and

O++ also provide many other useful features for organizing and manipulating persistent objects;

for example, they both provide functions to iterate over groups of objects. They do not, however,

provide security or garbage collection.

PS-algol provides distributed persistent objects, multi-user support using transactions, and

garbage collection based on reachability from one or more root objects. To use persistent objects

in PS-algol, a programmer must adapt his programming style to use persistent primitives for

transaction support.

SOS and Comandos integrate persistent object support with customized operating systems.

SOS uses an extended C++ compiler and Comandos currently uses an enhanced C compiler. They

both support distributed persistent objects, but these objects are not implemented within a general

�le system model.

9 Summary

In this paper, we have summarized the current design of the Choices persistent object implemen-

tation and outlined the research in progress. Choices is implemented as an object-oriented system

and persistent objects appear to simplify and unify many functions of the system. Our research has

demonstrated that persistent data can be accessed through an object-oriented �le system model as

e�ciently as an existing optimized commercial �le system. The object-oriented �le system can be

specialized to provide an object store for persistent objects. Several problems arise in building an

e�cient persistent object scheme in a small, 32-bit virtual address space that only uses paging. Our

current PersistentObject/Reference solution does have limitations, but allows quite large numbers

of objects to be active simultaneously, permits sharing, and allows e�cient method calls.

References

[1] R. Agrawal and N. H. Gehani. ODE (Object Database and Environment): The Language and

the Data Model. ACM, 23(1):36{45, January 1989.

[2] R. Agrawal and N. H. Gehani. Rationale for the Design of Persistence and Query Processing

Facilities in the Database Programming Language O++. In Second International Workshop

on Database Programming Languages, Oregon Coast, June 1989.

[3] M. P. Atkinson and O. P. Buneman. Types and Persistence in Database Programming Lan-

guages. ACM Computing Surveys, 19(2):105{190, June 1987.

12



[4] Alfred Leonard Brown. Persistent Object Stores. Technical Report Persistent Programming

Report 71, Universities of St Andrews and Glasgow, October 1989.

[5] Michael J. Carey, David J. DeWitt, Joel E. Richardson, and Eugene J. Shekita. Storage Man-

agement for Objects in EXODUS. In Won Kim and Frederick H. Lochovsky, editors, Object-

Oriented Concepts, Databases, and Applications, pages 341{370. Addison Wesley, Reading,

Massachusetts, 1989.

[6] Gary Johnston and Roy H. Campbell. An Object-Oriented Implementation of Distributed

Virtual Memory. In Proceedings of the USENIX Workshop on Distributed and Multiprocessor

Systems, pages 39{58, Ft. Lauderdale, Florida, September 1989.

[7] Peter W. Madany. An Object-Oriented Approach towards A General Model of File Systems.

Technical Report (to be published), University of Illinois at Urbana-Champaign, May 1990.

[8] Peter W. Madany, Roy H. Campbell, Vincent F. Russo, and Douglas E. Leyens. A Class

Hierarchy for Building Stream-Oriented File Systems. In Stephen Cook, editor, Proceedings of

the 1989 European Conference on Object-Oriented Programming, pages 311{328, Nottingham,

UK, July 1989. Cambridge University Press.

[9] Peter W. Madany, Douglas E. Leyens, Vincent F. Russo, and Roy H. Campbell. A C++

Class Hierarchy for Building UNIX-Like File Systems. In Proceedings of the USENIX C++

Conference, pages 65{79, Denver, Colorado, October 1988.

[10] Jos�e Alves Marques and Paulo Guedes. Extending the Operating System to Support an

Object-Oriented Environment. In Proceedings of OOPSLA '89, pages 113{122, New Orleans,

Louisiana, September 1989.

[11] John Ousterhout and Fred Douglis. Beating the I/O Bottleneck: A Case for Log-Structured

File Systems. Operating Systems Review, 23(1):11{28, January 1989.

[12] Hal S. Render, Robert N. Sum Jr., and Roy H. Campbell. An Object-Oriented Approach to

Integrated Con�gurationManagement and Project Management. Technical Report UIUCDCS-

R-89-1553, Dept. of Computer Science, University of Illinois at Urbana-Champaign, November

1989.

[13] Joel E. Richardson, Michael J. Carey, and Daniel T. Schuh. The Design of the E Program-

ming Language. Technical Report Computer Sciences 824, University of Wisconsin, Madison,

February 1989.

[14] Vincent Russo and Roy H. Campbell. Virtual Memory and Backing Storage Management in

Multiprocessor Operating Systems using Class Hierarchical Design. In Proceedings of OOPSLA

'89, pages 267{278, New Orleans, Louisiana, September 1989.

[15] Vincent F. Russo, Peter W. Madany, and Roy H. Campbell. C++ and Operating Systems

Performance: A Case Study. In Proceedings of the USENIX C++ Conference, San Francisco,

California, April 1990.

13



[16] Aamod Sane, Roy Campbell, and Ken MacGregor. Performance of Distributed Virtual Mem-

ory in an Object-Oriented Operating System. In Proceedings of the ACM Symposium on

Priciples of Distributed Computing, Quebec City, Quebec, Canada, August 1990 (submitted

for publication).

[17] Marc Shapiro, Phillipe Gautron, and Laurence Mossieri. Persistence and Migration for C++

Objects. In Stephen Cook, editor, Proceedings of the 1989 European Conference on Object-

Oriented Programming, pages 191{204, Nottingham, UK, July 1989. Cambridge University

Press.

14


